1,247 research outputs found

    Bayesian networks for enterprise risk assessment

    Get PDF
    According to different typologies of activity and priority, risks can assume diverse meanings and it can be assessed in different ways. In general risk is measured in terms of a probability combination of an event (frequency) and its consequence (impact). To estimate the frequency and the impact (severity) historical data or expert opinions (either qualitative or quantitative data) are used. Moreover qualitative data must be converted in numerical values to be used in the model. In the case of enterprise risk assessment the considered risks are, for instance, strategic, operational, legal and of image, which many times are difficult to be quantified. So in most cases only expert data, gathered by scorecard approaches, are available for risk analysis. The Bayesian Network is a useful tool to integrate different information and in particular to study the risk's joint distribution by using data collected from experts. In this paper we want to show a possible approach for building a Bayesian networks in the particular case in which only prior probabilities of node states and marginal correlations between nodes are available, and when the variables have only two states

    Numerical inversion of deformation caused by pressure sources: application to Mount Etna (Italy)

    Get PDF
    The interpretation of geodetic data in volcanic areas is usually based on analytical deformation models. Although numerical Finite Element modeling allows realistic features such as topography and crustal heterogeneities to be included, the technique is not computationally convenient for solving inverse problems using classical methods. In this paper we develop a general tool to perform inversions of geodetic data by means of 3D FE models. The forward model is a library of numerical displacement solutions, where each entry of the library is the surface displacement due to a single stress component applied to an element of the grid. The final solution is a weighted combination of the six stress components applied to a single element-source. The precomputed forward models are implemented in a global search algorithm, followed by an appraisal of the sampled solutions. After providing extended testing, we apply the method to model the 1993-97 inflation phase at Mt. Etna, documented by GPS and EDM measurements. We consider four different forward libraries, computed in models characterized by homogeneous/ heterogeneous medium and flat/topographic free surface. Our results suggest that the elastic heterogeneities of the medium can significantly alter the position of the inferred source, while the topography has minor effect

    On deformation sources in volcanic areas: Modeling the Campi Flegrei (Italy) 1982–84 unrest

    Get PDF
    Deformation sources in volcanic areas are generally modeled in terms of pressurized tri-axial ellipsoids or pressurized cracks with simple geometrical shapes, embedded in a homogeneous half-space. However, the assumption of a particular source mechanism and the neglect of medium heterogeneities bias significantly the estimate of source parameters. A more general approach describes the deformation source in terms of a suitable moment tensor. Ratios between moment tensor eigenvalues are shown to provide a strong diagnostic tool for the physical interpretation of the deformation source and medium heterogeneities may be accounted for through 3D finite element computations. Leveling and EDM data, collected during the 1982–84 unrest episode at Campi Flegrei (Italy), are employed to retrieve the complete moment tensor according to a Bayesian inversion procedure, considering the heterogeneous elastic structure of the volcanic area. Best fitting moment tensors are found to be incompatible with any pressurized ellipsoid or crack. Taking into account the deflation of a deeper magma reservoir, which accompanies the inflation of a shallower source, data fit improves considerably but the retrieved moment tensor of the shallow source is found to be incompatible with pressurized ellipsoids, still. Looking for alternative physical models of the dislocation source, we find that the best fit moment tensor can be best interpreted in terms of a mixed mode (shear and tensile) dislocation at 5.5 km depth, striking EW and dipping by ~25°–30° to the North. Gravity changes are found to be compatible with the intrusion of ~60–70·10^6 m^3 of volatile rich magma with density ~2400 kg/m^3

    Geometrical and physical properties of the 1982-84 deformation source at Campi Flegrei - Italy

    Get PDF
    Deformation of the ground surface in volcanic areas is generally recognized as a reliable indicator of unrest, possibly resulting from the intrusion of fresh magma within the shallow rock layers. The intrusion process is usually represented by a deformation source such as an ellipsoidal pressurized cavity, embedded within a homogeneous and elastic half-space. Similar source models allow inferring the depth, the location and the (incremental) volume of the intrusion, which are very important parameters for volcanic risk implications. However, assuming a homogeneous and elastic rheology and, assigning a priori the shape and the mechanism of the source (within a very restricted “library” of available solutions) may bias considerably the inference of source parameters. In complete generality, any point source deformation, including overpressure sources, may be described in terms of a suitable moment tensor, while the assumption of an overpressure source strongly restricts the variety of allowable moment tensors. In particular, by assuming a pressurized cavity, we rule out the possibility that either shear failure may precede magma emplacement (seismically induced intrusion) or may accompany it (mixed tensile and shear mode fracture). Another possibility is that a pre-existent weakness plane may be chosen by the ascending magma (fracture toughness heterogeneity). We perform joint inversion of levelling and EDM data (part of latter are unpublished), collected during the 1982-84 unrest at Campi Flegrei caldera: a 43% misfit reduction is obtained for a general moment source if the elastic heterogeneities computed from seismic tomography are accouted for. The inferred source is at 5.2 km depth but cannot be interpreted as a simple pressurized cavity. Moreover, if mass conservation is accounted for, magma emplaced within a shallow source must come from a (generally deeper) reservoir, which is usually assumed to be deep enough to be simply neglected. At Campi Flegrei, seismic tomography indicates that the “deep” magma source is rather shallow (at 7-8 km depth), so that its presence should be included in any thorough attempt to source modeling. Taking into account a deflating source at 7.5 km depth (represented either as a horizontal sill or as an isotropic cavity) and an inflating moment source, the fit of both levelling and EDM data improves further (misfit reduction 80%), but still the best fitting moment source (at 5.5 km depth) falls outside the range of pressurized ellipsoidal cavities. The shallow moment source may be decomposed in a tensile and a shear dislocation. No clue is obtained that the shear and the tensile mechanisms should be located in different positions. Our favourite interpretation is in terms of a crack opening in mixed tensile and shear mode, as would be provided by fluid magma unwelding pre-stressed solid rock. Although this decomposition of the source is not unique, the proposed solution is physically motivated by the minimum overpressure requirement. An important implication of this new interpretation is that the magma emplaced in the shallow moment source during the 1982-84 unrest was not added to already resident magma at the same position

    A new interpretation of the 1982-84 unrest episode at Campi Flegrei caldera (Italy) by numerical inversion

    Get PDF
    The 1982-84 unrest episode at Campi Flegrei was characterized by huge deformation (about 1.8 m uplift) located inside the caldera and significant gravity variations correlated with the elevation changes (about -213 ÎĽ\muGal/m). Due to the bell shape of the uplift, the source is usually interpreted to have a fixed spherical shape. In the present study, we combine simple point source mechanisms (dipoles and double couples) to represent arbitrary sources such as sphere, ellipsoid or sill. The models are realized by Finite Element and the medium may be characterized by elastic heterogeneities. We study the deformation detected by leveling and EDM techniques by coupling the FE forward models with an inversion procedure. The potential point sources are contained in a volume of 8Ă—\times8Ă—\times8 km3^3 located beneath Pozzuoli, the site of maximum displacement. We calculate the displacement field at each data point for each basic mechanism and we compare the result with the observed value. From the inversion of geodetic data we retrieve the best-fitting source parameters, without fixing the shape a priori. The best-fitting source is located beneath Pozzuoli at about 4.8 km b.s.l. and undergoes to horizontal compression and vertical dilatation

    On deformation sources in volcanic areas: modeling the Campi Flegrei (Italy) 1982-84 unrest

    Get PDF
    Deformation sources in volcanic areas are generally modeled in terms of pressurized tri-axial ellipsoids or other cavities with simple geometrical shapes embedded in homogeneous half-spaces. However, the assumption of a particular source mechanism and the neglect of medium heterogeneities bias significantly the estimate of source parameters. Leveling and EDM data, collected during the 1982-84 unrest episode at Campi Flegrei (Italy), are employed to retrieve source parameters according to a Bayesian inversion procedure, considering the heterogeneous elastic structure of the volcanic area. We describe a general deformation source in terms of a suitable moment tensor, through 3D finite element computations. Best fitting moment tensors are found to be incompatible with any pressurized ellipsoid. Taking into account the deflation of a deeper magma reservoir, which accompanies the inflation of the shallower moment source, data fit improves considerably but the retrieved moment tensor of the shallow source is found to be incompatible with pressurized ellipsoids, still. Looking for alternative physical models of the deformation source, we find that the best fit moment tensor can be best interpreted in terms of a mixed-mode (shear and tensile) dislocation at 5.5 km depth, striking EW and dipping by 30 to the North. Gravity changes are found to be compatible with the intrusion of 60·106 m3 of volatile rich magma with density 2000 kg/m3

    Extended X-ray emission in radio galaxies: the peculiar case of 3C 305

    Full text link
    Extended X-ray structures are common in Active Galactic Nuclei (AGNs). Here we present the first case of a Compact Steep Spectrum (CSS) radio galaxy, 3C 305, in which the X-ray radiation appears to be associated with the optical emission line region, dominated by the [O III]5007. On the basis of a morphological study, performed using the comparison between the X-rays, the optical and the radio band, we argue that the high energy emission has a thermal nature and it is not directly linked to the radio jet and hotspots of this source. Finally, we discuss the origin of the extended X-ray structure connected with the optical emission line region following two different interpretations: as due to the interaction between matter outflows and shock-heated environment gas, or as due to gas photoionized by nuclear emission.Comment: 5 pages, 2 figures, Accepted for publication in The ApJL Comments: references and affilitations correcte

    The highest frequency detection of a radio relic : 16 GHz AMI observations of the 'Sausage' cluster

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society: Letters. © 2014 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We observed the cluster CIZA J2242.8+5301 with the Arcminute Microkelvin Imager at 16 GHz and present the first high radio-frequency detection of diffuse, non-thermal cluster emission. This cluster hosts a variety of bright, extended, steep-spectrum synchrotron-emitting radio sources, associated with the intracluster medium, called radio relics. Most notably, the northern, Mpc-wide, narrow relic provides strong evidence for diffusive shock acceleration in clusters. We detect a puzzling, flat-spectrum, diffuse extension of the southern relic, which is not visible in the lower radio-frequency maps. The northern radio relic is unequivocally detected and measures an integrated flux of 1.2 ± 0.3 mJy. While the low-frequency (<2 GHz) spectrum of the northern relic is well represented by a power law, it clearly steepens towards 16 GHz. This result is inconsistent with diffusive shock acceleration predictions of ageing plasma behind a uniform shock front. The steepening could be caused by an inhomogeneous medium with temperature/density gradients or by lower acceleration efficiencies of high energy electrons. Further modelling is necessary to explain the observed spectrum.Peer reviewe

    Unravelling the origin of large-scale magnetic fields in galaxy clusters and beyond through Faraday Rotation Measures with the SKA

    Get PDF
    We investigate the possibility for the SKA to detect and study the magnetic fields in galaxy clusters and in the less dense environments surrounding them using Faraday Rotation Measures. To this end, we produce 3-dimensional magnetic field models for galaxy clusters of different masses and in different stages of their evolution, and derive mock rotation measure observations of background radiogalaxies. According to our results, already in phase I, we will be able to infer the magnetic field properties in galaxy clusters as a function of the cluster mass, down to 101310^{13} solar-masses. Moreover, using cosmological simulations to model the gas density, we have computed the expected rotation measure through shock-fronts that occur in the intra-cluster medium during cluster mergers. The enhancement in the rotation measure due to the density jump will permit to constraint the magnetic field strength and structure after the shock passage. SKA observations of polarised sources located behind galaxy clusters will answer several questions about the magnetic field strength and structure in galaxy clusters, and its evolution with cosmic time.Comment: 9 pages, 4 Figures, to appear as part of 'Cosmic Magnetism' in Proceedings 'Advancing Astrophysics with the SKA (AASKA14)', PoS(AASKA14
    • …
    corecore